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Presentation Outline (=

 What is the Laser Absorption Spectrometer (LAS)?
Why Coherent LAS? — Pro’s and Con’s
« Airborne LAS Transceiver Architecture

— Higher power METEOR lasers

— Frequency Offset-Locking

— Absolute Frequency Locking to CO, Cell

— Mechanical Overview

— Telescope Design
* Impact of Measurement from Aircraft

— Need for dynamically tuned receiver frequency band
» Activities for next year
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Concept for Global CO, Laser Absorption

Spectrometer (LAS) JPL

« Transmit and receive near nadir-pointing laser
beams with on and off-line wavelength channels

— Ground surface reflection (land and sea)
provides return signal — requires co-aligned
beams to obtain equal backscatter coefficients
and equal depolarization factors for both
channels

— Measure difference in integrated path
absorption at these two wavelengths

« Use additional sensor data (temperature, surface
pressure, altimetry) to extract value of CO,
concentration

— Goal of 1 ppmv precision with ~ 50-100 km
horizontal resolution (large scale
measurements)

* Eventual plan is to perform global measurement
from Low Earth Orbit Satellite (LEOS) platform

« Development plan includes interim measurement
and technology demonstration from airborne
platform — NASA DC-8 Science Aircraft
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Key Design Features of the
LAS Transceiver

APL

« Coherent CW transceiver with 3 lasers and two broadcast channels

— Laser 1 locked to center of CO, line feature at 2051nm for absolute frequency
reference

 Line selected for low temperature dependence of absorption strength and for
match to emission wavelength of Tm,Ho:YLF laser

— Laser 2 offset-locked by 4GHz to Laser 1 for broadcast on side of absorption feature
— Laser 3 offset-locked by 20GHz to Laser 1 (FM sideband lock) for off-line broadcast
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LAS Weighting Functions

provide Altitude Resolution APL

Weighting Functions near 1611 nm

Weighting Functions near 2051 nm
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« LAS at 2050.9nm biased to PBL (<2km from surface) where CO, source and
sink structures are most measurable against 370 ppmv background

« Strong bias to PBL allows a single on-line wavelength to be used in the LAS
measurement without ambiguity
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Why Coherent LAS?
Pro’s and Con’s JPL

« Pro’s:
— Coherent detection CW LAS offers improved narrowband SNR for a given transmit
power and aperture size compared with direct detection with a pulsed transmitter

« Narrow-band heterodyne detection reduces detector Noise Equivalent Power
(NEP) and sensitivity to background irradiance

— Attractive especially for space-borne measurement due to reduction in Power-
Aperture product (with associated reduction in instrument complexity and launch cost)

« Con’s:
— Statistical distribution of intensity in speckles (coherent detection) results in a relative

uncertainty in estimate of mean value ~ proportional to N-'2, where N is number of
independent samples (speckle realizations)

— For 0.1% measurement precision (0.4 ppmv precision in 370 ppmv level), require
averaging over 1 million independent speckle realizations

« With a 4cm transmit beam radius, 1M samples = 40km measurement resolution
« At 200m/s flight speed, each LAS measurement obtained every 200 seconds
— Equivalent values for space-based platform:
* 12cm transmit beam radius (30cm aperture), 1M samples = 120km resolution
« 7km/s orbit velocity, each LAS measurement obtained every 17 seconds

ESTO

Earth Science Technology Office




RACK #1 @ instrument location

LAS System Diagram

POWER
DISTRIBUTION PANEL

RACK #2 in Cabin
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Functional Configuration of LAS
Transceiver Optical Bench (Surface 1)
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APL

Dual monostatic layout (on-
line and off-line) using PM
spectrometer for CO, lock

Lasers and %2 wave plates
physically located on Surface
2

JPL providing on-board
reference target for
calibration check of on-line
and off-line channels during
flight

— Allows correction for
component thermal
sensitivity, required for
amplitude
measurements with
0.1% precision
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Optical Bench Layout - Surface 1 JPL
with Reference CO, Cell

CO, Reference Cell Temperature-stabilized Aluminum bench

Wave Plate/Polarizer

Assemblies T—

CO, Heterodyne Detector———»

Periscope w/2 D.O.F. (2ea)
Shutter, 2ea

2X Expander (2ea)

Electro-Optic Modulator
(CO, Lock) Online Transmit/Receive

Polarization Switch

Offline Transmit/Receive

Polarization Switch

Laser 3 Off-Line /ﬁ' Y

Fiber Port ﬁ

Adjustable turn mirrors—"

Electro-Optic Modulator
(Offline offset-lock)

2mm Fiber ports from SLM
Lasers and to heterodyne
detectors and beat
detectors (7ea)

Laser 2 On-Line
Power Monitor Packages Fiber Port

Laser 1 Reference

Acousto-Optic Fiber Port

Modulator
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Optical Bench Layout — Second Surface with

Telescopes and fiber-coupled Lasers JPL
w Periscope Assembly
A / With 1/4 Wave Plate

Telescopes

MO Assembly, Liquid Cooled

Fiber Coupler Assembly
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Higher Power Tm,Ho:YLF Laser
developed for CO, LAS

APL

250mW Tm,Ho:YLF METEOR® developed using 3W pump diode

* 150mW output to LAS telescopes (including fiber-coupling loss)
+ All frequency characteristics same as standard CTl| 50mW METEOR®

* 5-10kHz/ms linewidth, free-running

* All units in LAS XCVR PZT-tuned for absolute and relative frequency lock

Tm:Ho:YLF METEOR™ SLM LI Curve
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Absolute Frequency Lock to Reference
CO, Cell

« Phase Modulation (PM) Spectrometry used to lock Laser 1 (reference laser) to CO,
line center at 2051nm
— EOM provides FM sidebands at +/-170MHz for probing Doppler-broadened line
profile (~350MHz linewidth at 0.5 Torr) — high error signal slope at lock point
— AOM isolates CO, lock optics from “unwitting interferometers” arising from rest of
system optics — Residual Amplitude Modulation (RAM) noise reduction
— Other optics (lenses, polarizers, iris) also introduced to reduce RAM noise

APL
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Error Signal Generation using
Phase Modulation Spectrometer JPL

» Electro-optic modulator imposes equal amplitude
and opposite phase sidebands on the carrier (C)
« Spectrometer detector measures the added beat
amplitudes of the two sidebands with the carrier
« Away from the absorption feature, both sidebands
are transmitted equally (100%)
« The combined error signal is zero
« Atline center, both sidebands are equally
attenuated (straddling the symmetric absorption
Optical Frequency feature)
c  The combined error signal is again zero
a4 | o+ » On either side of the absorption line center, one
sideband is attenuated less than the other,
VRFVRF resulting in a non-zero error signal with reversed

-
o
e
SN

Transmission

v

polarity about line center
« Error signal used in servo loop to tune carrier
| frequency to absorption line center
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Phase Modulation Spectrometer
Electronics Design

Dir. Coupler
RF Synth —»{AMP v

Dir. Coupler @ l
Atten

APL

] z ) LO Phasing Line

“LO Monitor” v
ERROR PD |e Carbon Dioxide Eom «— [.aser
SIGNAL

BP Filter
Dir. Coupler
LP Filter 7 HP Filter
Mixer “RF Signal Monitor”

* RF detection phase depends on path difference of LO signal
(blue) and modulation signal (green), including optical path from
modulator to detector (red)
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Survey Scan and Absolute Lock
to Reference CO, Cell JPL

Upper plot shows a survey scan over 20 GHz tuning
range of METEOR® laser

* Red trace shows output of PM spectrometer (CO,
lock error signal)

« Green trace shows laser PZT voltage
5 peaks identified (CO, isotopes)
» Peaks #1 and #2 distorted because of high
amplitude (RF amplifier saturation)

* Instrument is locked to strongest peak, #1 at
~2051nm (4875.749cm™")

Locked laser shows peak-to-peak frequency excursions
of less than 300kHz

« Major improvement over previously reported
performance for absolute frequency lock to CO,

* Red trace is demodulated error signal
* Yellow trace is raw RF beat signal

CO, LAS measurement requires absolute frequency
knowledge to <1MHz (long-term linewidth, not peak-to-
peak variation)

« Absolute frequency lock readily achieved
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Offset Locking of Online and Offline Lasers JPL

« Frequency Offset-Locking hardware is used to locate on-line and off-line laser
frequencies w.r.t. line-center reference laser frequency
— Typical offset-locking accuracy previously demonstrated ~ 5kHz
— Frequency noise of locked laser matches that of reference laser for noise
components inside servo bandwidth
— Additional high frequency noise of locked laser similar to that of reference laser
— As aresult, locked laser has ~ same short-term linewidth as reference laser (5-

10kHz/ms) - Offset-Locking Process:

— Output from Tunable Laser (MO)

| . | P " R | MoPzT and Reference Laser (LO) optically
4’% i Dl 4’% ampiner [ Loon YD mixed and detected with wideband
photodiode/ preamplifier package

A

— Beat frequency compared with

- Prog atnui; preset frequency generated by
Local Ottt | Direct Digital Synthesizer (DDS)
Oscillator YN

— Phase-locked loop error signal
amplified and used to drive MO

- £ ompu G frequency actuator (PZT)
Wideband Control : . .
Master — Zero-crossing error signal obtained
Oscillator when beat frequency matches DDS
T frequency
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Support and Vibration
|solation System

APL

Frame structure w/crossed gusseting
provides high stiffness, reduced mass

1-1/4” OD Alum. 6061-T6 Braces

Four connector panels to
accommodate feedthrus

Fiber and liquid

<«— Base Structure feedthrus

Valves for purging
w/dry nitrogen (LN, boil off)

Hermetic D-Sub connectors

Four point mounting to support structure
implemented at critical locations
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Enclosure Design AJPLU

1.25”

/ Clearance for '2” fastener

T

14.125 Typ.

A
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— 4.84” from C.L.

4.5” Dia. C.A

6.08” Window separation, symmetric about C.L.
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R=680

‘ 80

Peak to valley 0.034 waves @ 2 microns

Table 2. Tolerance budget requirements

Parameter

Tolerance

Resolution of
adjustment

Range of
adjustment

Temporal
stability

Lateral positioning
of the secondary
mirror

+/-0.05 mm.

0.005 mm

+-0.5mm.

+-0.007mm.

Axial positioning of
the secondary
mirror

+-0.05

0.005 mm

+-0.5mm.

+/- 0.03 mm.

Angular
positioning of the
secondary mirror

Telescope alignments

+/- 0.5 mrad

0.01 mrad

+/- 10 mrad

+/- 0.025 mrad

Angular
positioning of the
telescops

Telescope to
board alignment

+- 0.1 mrad

0.07 mrad

+-2 mrad

+/-0.02 mrad

Angular
positioning of the
illuminating beam

+- 0.5 mrad

0.05 mrad

+/- 10 mrad

+- 0.1 mrad

Lateral positioning
of the illuminating
beam

Periscope
alignments

+-0.2mm.

0.1 mm.

+/-5 mm.

+/- 0.1 mm.
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APL

Telescope Design and Analysis

Secondary mirror axial displacement

Secondary mirror lateral displacement
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Dominant output wavefront error is tilt, which does not matter, all others are < 8.9 x 103 A
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LAS Bandwidth Reduction increases
CNR and reduces Data Storage JPL

* Instrument attitude adjusted for LOS Doppler frequency shifts centered at 15MHz (with ~+/- 1MHz variation
due to expected aircraft and target motion)

— Front-end receiver band set to 10 to 20MHz

+ Digitally tunable 5-band filter used in signal processor (both for on-line and off-line channels) to determine
and center Doppler-shifted return signal

— Maximum amplitude algorithm and in-band FFT’s used to center return signals within center detection
bands (using stronger off-line channel signal for tuning control)

— 10 bands digitized (5 for on-line, 5 for off-line) for signal capture and centering
— 6 bands (3 on-line and 3 off-line) mixed to base-band and stored (I and Q) for post processing
— Front end digital tuning adjusted every 1ms, initialized using Aircraft INS data
— Narrowband SNR (CNR) increased due to bandwidth reduction per bin from 10MHz to 100kHz

Return 5-Band Receiver Return Center Band
Signal 5 Signal !
0 [ ANAAN A
A : V": A :
i _ N, |
: Signal VoY :
E Noise i
10 Vi 20 -50 0 +50 ]

Frequency (MHz) Frequency (kHz)ESTO
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Digitizer able to track and center signal at
-3dB CNR (integrated power)

& Frequency Analysis
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Digitizer Tracking Performance at
-6dB CNR (integrated power) APL
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Assumptions for plotted data
— 8cm beam diameter, monostatic

» Effective beam diameter will be
reduced due to aircraft boundary layer,
especially towards rear of aircraft —
degradation in CNR

— 10% lidar system efficiency

— Off-line LAS wavelength 2051.25nm

- p,=0.1and 0.01 /sr

— Good visibility
For 100kHz processor bandwidth and 5km
platform altitude:

— Off-line CNR ~3dB for 0.01/sr reflectance

» Acceptable for tracking algorithm
— Off-line CNR ~13dB for 0.1/sr reflectance

« Tracking algorithm should be robust
while allowing for CNR reduction due
to aircraft boundary layer

Platform Altitude (km)

Expected off-line CNR allows robust
ground return frequency tracking

CNR vs Platform Altitude
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Presentation Summary (=

LAS Transceiver being developed for Integrated Path Differential Absorption (IPDA) CO,
concentration measurements from NASA DC-8 aircraft

— System Level CDR recently completed (May 2003)
— Telescope integration and ground tests to be performed beginning of 2004
— Flight measurements due late 2004
« Design based on previous CTI sub-assemblies for airborne sensors
« Required laser performance demonstrated in 15t of 4 identical units
— Fabrication of remaining 3 units nearly completed
» Absolute frequency locking demonstrated to required sub-MHz accuracy

— CO, lock obtained to Doppler-broadened line (~350MHz wide) using PM
Spectrometer technique with sidebands at +/- 170MHz

« Offset-locking requirements identical to previously demonstrated performance
« Dynamic tuning of receiver bandwidth required to correct for aircraft motion

— Risk reduction demonstration indicates function may be performed with COTS digital
front end unit
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